Release Notes#
skelearndf 2.4#
sklearndf 2.4 adds support for scikit-learn 1.7, and drops support for scikit-learn 1.2 and earlier, and Python 3.8 and earlier.
2.4.2#
FIX: update
ColumnTransformerDFto correctly handle column selectors created with scikit-learn’smake_column_selector
2.4.1#
FIX: implement method
EstimatorDF.__sklearn_is_fitted__(), introduced in scikit-learn 1.3, to correctly report if the estimator is fitted
2.4.0#
API: add DF wrapper classes
FixedThresholdClassifierDFandTunedThresholdClassifierCVDFfor native classifiersFixedThresholdClassifierandTunedThresholdClassifierCV, respectivelyAPI: add DF wrapper class
SelfTrainingClassifierDFfor native classifierSelfTrainingClassifierAPI: support tag propagation introduced in scikit-learn 1.6
API: add utility function
is_scalar_nan()that had been removed fromsklearndf.utils
sklearndf 2.3#
2.3.0#
sklearndf 2.3 adds support for scikit-learn 1.3 and drops support for scikit-learn 0.24.
API: add DF wrapper classe
HDBSCANDFfor native estimatorHDBSCANAPI: add DF wrapper class
TargetEncoderDFfor native estimatorTargetEncoder
sklearndf 2.2#
sklearndf 2.2 adds support for scikit-learn 1.2, and enhances the EstimatorDF API.
2.2.1#
VIZ: use scikit-learn’s native HTML representation of estimators, if available
2.2.0#
sklearndf 2.2 adds support for scikit-learn 1.2. It drops support for scikit-learn 0.23 and earlier due to incomplete support of sparse output (see below).
API: DF estimators now support native estimators using sparse matrices as input or output, and automatically convert them to or from sparse
DataFrameobjectsAPI: new property
EstimatorDF.output_names_to get the names of the output columns the estimator was fitted withAPI: new method
LearnerPipelineDF.preprocessto apply the preprocessing step to a data frameAPI: remove properties
feature_names_out_andfeature_names_original_from classLearnerPipelineDFAPI:
Indexinstances obtained fromEstimatorDF.feature_names_in_andTransformerDF.feature_names_out_are now named"feature"instead of"feature_in"and"feature_out", respectively, andSeriesinstances obtained fromTransformerDF.feature_names_original_are now named"feature_original"instead of"feature_in", and their indices are now named"feature"instead of"feature_out"; this is to separate the semantics of the originating property from the column index, which may be used in other contexts
sklearndf 2.1#
sklearndf 2.1 adds support for scikit-learn 1.1.
2.1.1#
This is a maintenance release to catch up with sklearndf 2.0.2.
2.1.0#
API: new clusterer
BisectingKMeansDFAPI: new transformer
MiniBatchNMFDFAPI: new transformer
RandomTreesEmbeddingDF; note that classRandomTreesEmbeddingexisted previously in scikit-learn, but is based onTransformerMixinonly as of scikit-learn 1.1API: support parameters
max_categoriesandmin_frequencyofOneHotEncoderDF, introduced in scikit-learn 1.1API: support array-like values for parameter
dropofOneHotEncoderDFAPI: support
"passthrough"as a transformer inFeatureUnionDFAPI: remove
GeneralizedLinearRegressorDFsince the underlying native estimator is a base class and not intended to be used as a regressor of its own
sklearndf 2.0#
sklearndf 2.0 adds support for scikit-learn 1.0, adds data frame support for clusterers along with additional API enhancements and improvements, and is now subject to static type checking with mypy.
2.0.2#
BUILD: add support for
pandas2.0 and aboveFIX: property
PCADF.n_components_now returns the value ofn_components_, notn_componentsFIX: detect missing and extra columns when validating data frames resulting from transforms, even when the total column count is correct
2.0.1#
API: upon declaration of new wrapper classes, automatically validate that their associated native estimators are compatible with the wrapper class
API: new public constants
DROPandPASSTHROUGHinColumnTransformerDFFIX: base
LGBMClassifierDFandXGBClassifierDFon the the correct wrapper classClassifierWrapperDFFIX: support array-like values for parameter
dropofOneHotEncoderDFFIX: various minor tweaks and stability improvements
2.0.0#
API:
ClassifierDFandRegressorDFget a new base classSupervisedLearnerDF, which in turn is based onLearnerDF;SupervisedLearnerDFimplements methodscore(), which is no longer implemented byLearnerDFAPI: class
EstimatorDFnow implements theHasExpressionReprmix-in, rendering estimator representations asExpressionobjects to enable better formattingAPI: added data frame support for method
partial_fit()API: removed
OutlierRemoverDFAPI: removed dependency on package lightgbm:
LGBMClassifierDFandLGBMRegressorDFare still available if lightgbm is installedAPI: added support for xgboost:
XGBClassifierDFandXGBClassifierDFare available if xgboost is installedAPI: DF wrapper classes are now created using proper class declarations to better conform with Python type conventions checked by mypy; see
sklearndf.wrapperfor detailsAPI: remove functions
make_df_estimator,make_df_classifier,make_df_regressor, andmake_df_transformerwhich are now obsoleteAPI: move some classes in
sklearndf.wrapperto sub-packagessklearndf.wrapper.stackingandsklearndf.wrapper.numpyto improve package navigability and to achieve better de-coupling of the underlying code; this change also movesStackingClassifierWrapperDFandStackingRegressorWrapperDFto packagesklearndf.wrapper.stacking
sklearndf 1.2#
This release adds support for scikit-learn 0.24.
1.2.3#
This is a maintenance release to catch up with sklearndf 1.1.3.
1.2.2#
This release makes small API tweaks, and catches up with sklearndf 1.1.2.
API: make type hints more specific in signatures for
make_df_transformer(),make_df_classifier(), andmake_df_regressor()
1.2.1#
This is a maintenance release to catch up with sklearndf 1.1.1.
1.2.0#
API: add DF adaptations for classes introduced by scikit-learn 0.24:
PolynomialCountSketchDFandSequentialFeatureSelectorDF
sklearndf 1.1#
1.1.3#
This release relaxes package dependencies to support any numpy version 1.x from 1.16.
1.1.2#
This release improves compatibility with scikit-learn and fixes bugs.
API: add full support for the _estimator_type attribute
FIX: do not reset transformers when calling
TransformerDF.inverse_transform()FIX: accept “passthrough” as value for arg remainder of
ColumnTransformerDF
1.1.1#
This release addresses compatibility issues with meta-estimators.
FIX: support complex DF estimators inside
StackingEstimatorDFFIX: raise an exception if a base estimator is not supported by one of sklearndf’s implementations for DF meta-estimators
1.1.0#
This release exposes the wrapper API used to generate augmented DF estimators from native scikit-learn estimators.
API: expose the
EstimatorWrapperDFclass hierarchy through the newsklearndf.wrapperpackageAPI: create new scikit-learn wrapper classes with the new functions
make_df_estimator(),make_df_classifier(),make_df_regressor(), andmake_df_transformer()
sklearndf 1.0#
1.0.2#
This is a maintenance release focusing on enhancements to the CI/CD pipeline and bug fixes.
FIX: correctly mirror
__init__signatures of native estimators to their corresponding DF estimatorsFIX: do not mirror native estimator class attributes and protected members to DF estimators
FIX: support
"passthrough"transformer inColumnTransformerDFFIX: support
dropparameter inOneHotEncoderDFBUILD: add support for numpy 1.20
BUILD: updates and changes to the CI/CD pipeline
1.0.1#
Initial release.