sklearndf.pipeline.SupervisedLearnerPipelineDF#

class sklearndf.pipeline.SupervisedLearnerPipelineDF(*, preprocessing=None)[source]#

A data frame enabled pipeline with an optional preprocessing step and a mandatory supervised learner step.

Bases:

SupervisedLearnerDF, LearnerPipelineDF [~T_FinalSupervisedLearnerDF]

Generic types:

~T_FinalSupervisedLearnerDF(bound= SupervisedLearnerDF)

Metaclasses:

ABCMeta

Parameters:

preprocessing (Optional[TransformerDF]) – the preprocessing step in the pipeline (default: None)

Method summary

clone

Make an unfitted clone of this estimator.

fit

Fit this pipeline using the given inputs.

get_metadata_routing

See sklearn.utils.get_metadata_routing()

get_params

Get the parameters for this estimator.

predict

Predict outputs for the given inputs.

preprocess

Preprocess the given feature values using this pipeline's preprocessing step.

score

Score this learner using the given inputs and outputs.

set_fit_request

See sklearn.utils.RequestMethod.__get__.<locals>.func()

set_params

Set the parameters of this estimator.

set_score_request

See sklearn.utils.RequestMethod.__get__.<locals>.func()

to_expression

Render this object as an expression.

Attribute summary

COL_FEATURE

Name assigned to an Index or a Series with the names of the features used to fit a EstimatorDF.

feature_names_in_

The pandas column index with the names of the features used to fit this estimator.

final_estimator

The final estimator following the preprocessing step.

final_estimator_name

The name of the estimator step parameter.

is_fitted

True if this object is fitted, False otherwise.

n_features_in_

The number of features used to fit this estimator.

n_outputs_

The number of outputs used to fit this estimator.

native_estimator

The native estimator underlying this estimator.

output_names_

The name(s) of the output(s) this supervised learner was fitted to.

preprocessing

The preprocessing step.

preprocessing_name

The name of the preprocessing step parameter.

Definitions

clone()#

Make an unfitted clone of this estimator.

Return type:

SupervisedLearnerPipelineDF

Returns:

the unfitted clone

fit(X, y=None, *, sample_weight=None, **fit_params)#

Fit this pipeline using the given inputs.

Parameters:
  • X (Union[DataFrame, Series]) – input data frame with observations as rows and features as columns

  • y (Union[Series, DataFrame, None]) – an optional series or data frame with one or more outputs

  • sample_weight (Optional[Series]) – sample weights for observations, to be passed to the final estimator (optional)

  • fit_params (Any) – additional keyword parameters as required by specific estimator implementations

Return type:

SupervisedLearnerPipelineDF

Returns:

self

get_metadata_routing()#

See sklearn.utils.get_metadata_routing()

get_params(deep=True)#

Get the parameters for this estimator.

Parameters:

deep (bool) – if True, return the parameters for this estimator, and for any sub-estimators contained in this estimator

Return type:

Mapping[str, Any]

Returns:

a mapping of parameter names to their values

predict(X, **predict_params)#

Predict outputs for the given inputs.

The inputs must have the same features as the inputs used to fit this learner. The features can be provided in any order since they are identified by their column names.

Parameters:
  • X (Union[Series, DataFrame]) – input data frame with observations as rows and features as columns

  • predict_params (Any) – optional keyword parameters as required by specific learner implementations

Return type:

Union[Series, DataFrame]

Returns:

predictions per observation as a series, or as a data frame in case of multiple outputs

preprocess(X)#

Preprocess the given feature values using this pipeline’s preprocessing step.

If the pipeline has no preprocessing step, return the input unchanged.

Parameters:

X (DataFrame) – input data frame with observations as rows and features as columns

Return type:

DataFrame

Returns:

the preprocessed input data frame

score(X, y=None, sample_weight=None)[source]#

Score this learner using the given inputs and outputs.

Parameters:
  • X (Union[Series, DataFrame]) – data frame with observations as rows and features as columns

  • y (Optional[Series]) – a series or data frame with the true outputs per observation

  • sample_weight (Optional[Any]) – optional series of scalar weights, for calculating the resulting score as the weighted mean of the scores for the individual predictions

Return type:

float

Returns:

the score

set_fit_request()#

See sklearn.utils.RequestMethod.__get__.<locals>.func()

set_params(**params)#

Set the parameters of this estimator.

Valid parameter keys can be obtained by calling get_params().

Parameters:

params (Any) – the estimator parameters to set

Return type:

SupervisedLearnerPipelineDF

Returns:

self

set_score_request()#

See sklearn.utils.RequestMethod.__get__.<locals>.func()

to_expression()#

Render this object as an expression.

Return type:

Expression

Returns:

the expression representing this object

COL_FEATURE = 'feature'#

Name assigned to an Index or a Series with the names of the features used to fit a EstimatorDF.

See feature_names_in_() and feature_names_original_().

property feature_names_in_: Index#

The pandas column index with the names of the features used to fit this estimator.

Raises:

AttributeError – this estimator is not fitted

abstract property final_estimator: SupervisedLearnerPipelineDF#

The final estimator following the preprocessing step.

abstract property final_estimator_name: str#

The name of the estimator step parameter.

property is_fitted: bool#

True if this object is fitted, False otherwise.

property n_features_in_: int#

The number of features used to fit this estimator.

Raises:

AttributeError – this estimator is not fitted

property n_outputs_: int#

The number of outputs used to fit this estimator.

Raises:

AttributeError – this estimator is not fitted

property native_estimator: BaseEstimator#

The native estimator underlying this estimator.

This can be another estimator that this estimator delegates to, otherwise the native estimator is self.

property output_names_: list[str]#

The name(s) of the output(s) this supervised learner was fitted to.

Raises:

sklearn.exceptions.NotFittedError – this estimator is not fitted

property preprocessing: TransformerDF | None#

The preprocessing step.

property preprocessing_name: str#

The name of the preprocessing step parameter.